Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Architecture of By-Wire Systems Design Elements and Comparative Methodology

2003-03-03
2003-01-1291
By-wire systems have the potential of augmenting the normal capabilities of human drivers as well as serving as enablers for emerging safety technologies. To achieve these features, these systems must be carefully designed, analyzed, and verified for safety because they are new, complex, and potentially exhibit new and different failure modes and effects. Duplication may be required to ensure that safety margins are met in the presence of faults. Full duplication of every system may not lead to a cost effective implementation, especially if multiple independent by-wire systems are placed on a single vehicle. Other architectural approaches for the integration of by-wire systems need to be considered and analyzed. These architectures should meet if not exceed the safety requirements while providing a more cost effective implementation than a fully duplicated architecture.
Technical Paper

Rollover and Drop Tests - The Influence of Roof Strength on Injury Mechanics Using Belted Dummies

1990-10-01
902314
This report presents the test methods and results of a study involving lap/shoulder belted dummies in dynamic dolly rollover tests and inverted vehicle drop tests. Data are presented showing dummy neck loadings resulting from head impacts to the vehicle interior as the vehicle contacts the ground. Comparison of the number and magnitude of axial neckloads are presented for rollcaged and production vehicles, as well as an analysis of the factors which influence neckloads under these conditions.
Journal Article

Analysis of Contamination Protection for Brake Rotor

2016-09-18
2016-01-1930
Contamination protection of brake rotors has been a challenge for the auto industry for a long time. As contamination of a rotor causes corrosion, and that in turn causes many issues like pulsation and excessive wear of rotors and linings, a rotor splash protection shield became a common part for most vehicles. While the rotor splash shield provides contamination protection for the brake rotor, it makes brake cooling performance worse because it blocks air reaching the brake rotor. Therefore, balancing between contamination protection and enabling brake cooling has become a key critical factor when the splash shield is designed. Although the analysis capability of brake cooling performance has become quite reliable, due to lack of technology to predict contamination patterns, the design of the splash protection shield has relied on engineering judgment and/or vehicle tests. Optimization opportunities were restricted by cost and time associated with vehicle tests.
Technical Paper

Interpretations of the Impact Responses of a 3-Year-Old Child Dummy Relative to Child Injury Potential

1982-01-01
826048
An analysis is presented that was used to interpret the significance of response measurements made with a specially instrumented, 3-year-old child dummy that was used to evaluate child injury potential of the second-generation, passenger inflatable restraint system that was being developed by General Motors Corporation. Anesthetized animals and a specially instrumented child dummy, both 3-year-old child surrogates, were exposed to similar inflating-cushion, simulated collision environments. The exposure environments were chosen to produce a wide spectrum of animal injury types and severities, and a corresponding broad range of child dummy responses. For a given exposure environment, the animal injury severity ratings for the head, neck, thorax and abdomen are paired with dummy response values corresponding to these body regions.
Technical Paper

Biomechanical Basis for the CRABI and Hybrid III Child Dummies

1997-11-12
973317
A family of adult and child size dummies was developed under the direction of two task groups of the SAE Mechanical Human Simulation Subcommittee of the Human Biomechanics and Simulation Standards Committee. These new child size dummies represent fiftieth percentile children who are 6 months, 12 months, 18 months, 3 years, and 6 years old. The sizes and total body weights of the dummies were based on detailed anthropometry studies of children of these ages. The techniques used to establish the segment masses and the resulting design goals are detailed. Appropriate impact response requirements were scaled from the biofidelity response requirements of the Hybrid III, taking into account the differences in size, mass and elastic modulus of bone between adults and children. The techniques used to establish the biomechanical impact response requirements for the child dummies are discussed and the resulting biomechanical impact response requirements are given.
Book

Automotive Systems Engineering - Approach and Verification

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book is the fourth in a series of four volumes on this subject and features 12 papers, published between 2002-2009, that address the challenges and importance of systems approach in system verification and validation, stressing the use of advanced tools and approaches. Topics covered include: Systems integration and verification Software engineering in future automotive systems development Configuration management of the model-based design process Buy the Set and Save!
Book

Automotive Systems Engineering

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This four-volume set features 49 papers, originally published from 1999 through 2010, that cover the latest research and developments on various aspects of automotive systems engineering. The four-volume set consists of these individual volumes: Automotive Systems Engineering - Overview Automotive Systems Engineering - Requirements and Testing Automotive Systems Engineering - Modeling Automotive Systems Engineering - Approach and Verification
Book

Automotive Systems Engineering - Requirements and Testing

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book - the second in a series of four volumes on this subject - features 11 papers, published between 2000-2010, that address the challenges and importance of requirements and testing in systems engineering, stressing the use of advanced tools and approaches. Topics covered include: Creating correct requirements Requirement analysis Document management Development Management Architecture for military vehicles Buy the Set and Save! Automotive Systems Engineering The four-volume set consists of these individual volumes: Automotive Systems Engineering - Overview Automotive Systems Engineering - Requirements and Testing Automotive Systems Engineering - Modeling Automotive Systems Engineering - Approach and Verification
Book

Automotive Systems Engineering - Modeling

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book - the third in a series of four volumes on this subject - features 11 papers, published between 1999-2010, that address the challenges and importance of systems modeling, stressing the use of advanced tools and approaches. Topics covered include: Automotive systems modeling Model-based design culture Applications Buy the Set and Save! Automotive Systems Engineering The four-volume set consists of these individual volumes: Automotive Systems Engineering - Overview Automotive Systems Engineering - Requirements and Testing Automotive Systems Engineering - Modeling Automotive Systems Engineering - Approach and Verification
Book

Automotive Systems Engineering - Overview

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book is the first in a series of four volumes on this subject and features 15 papers, published between 2004-2010, that emphasize the importance of systems concepts in the automotive area, and stress the use of advanced tools and approaches. Topics covered include: Technology transfer Six Sigma deployment Systems engineering capability in automotive systems In addition to 11 SAE technical papers, this volume also includes two invited papers: "Systems Engineering Definitions" by editor Subramaniam Ganesan and "Systems Engineering for Military Ground Vehicles" by M. Mazzara and R. Iyer. Buy the Set and Save!
Book

IDB-C Data Bus

2002-04-15
By using descriptive charts and graphs, this report provides an analysis of the IDB-C network at the Subsystem level and at the vehicle level, using data comparison between modeling and simulation of the network and measurement and analysis on physical systems.
Technical Paper

Aerodynamic Test and Development of the Corvette C5 for Showroom Stock Racing

2002-12-02
2002-01-3333
This pager documents a one shift (10 hour) wind tunnel test program conducted on a Corvette C5 prepared for Sports Car Club of America (S.C.C.A.) World Challenge racing. The testing was conducted at the Canadian National Research Center in Ottawa, Canada. Specific areas of test included front fascia and under tray, rear air discharge, rear wing configuration and angle, B-pillar configuration, and ride height. Standard wind tunnel test procedures were followed. In total twenty-six separate configurations were evaluated. Data for front and rear lift, total drag, and lift/drag (L/D) ratio are provided for each test configuration. The cumulative effects of the aerodynamic changes evaluated in this program, calculated at 192 KPH (120 MPH), increased front down force by 318 N (72 Lb.), and rear down force by 770 N (173 Lb.). Lift/drag ratio was improved from -0.597 to -1.016. These changes increased total drag by 381 N (86 Lb.).
X